Application of Ground-penetrating Radar to the Identification of Subsurface Piping in Blanket Peat
نویسندگان
چکیده
Natural soil pipes are common and significant in upland blanket peat catchments yet there are major problems in finding and defining the subsurface pipe networks. This is particularly important because pipeflow can contribute a large proportion of runoff to the river systems in these upland environments and may significantly influence catchment sediment and solute yields. Traditional methods such as digging soil pits are destructive and time-consuming (particularly in deep peat) and only provide single point sources of information. This paper presents results from an experiment to assess the use of ground-penetrating radar (GPR) to remotely sense pipes in blanket peat. The technique is shown to be successful in identifying most of the pipes tested in the pilot catchment. Comparison of data on pipes identified by GPR and verified by manual measurement suggests that pipes can be located in the soil profile with a depth accuracy of 20 to 30 cm. GPR-identified pipes were found throughout the soil profile; however, those within 10–20 cm of the surface could not be identified using the 100 or 200 MHz antennae due to multiple surface reflections. Generally pipes smaller than 10 cm in diameter could not be identified using the technique although modifications are suggested that will allow enhanced resolution. Future work would benefit from the development of dual-frequency antennae that will allow the combination of high-resolution data with the depth of penetration required in a wetland environment. The GPR experiment shows that pipe network densities were much greater than could be detected from surface observation alone. Thus, GPR provides a non-destructive, fast technique which can produce continuous profiles of peat depth and indicate pipe locations across survey transects. Copyright 2002 John Wiley & Sons, Ltd.
منابع مشابه
Controls of soil pipe frequency in upland blanket peat
[1] Soil pipes were surveyed in 160 British blanket peat catchments using consistent application of ground-penetrating radar. Soil pipes were found in all catchments. The mean frequency of piping was 69 per kilometer of surveyed transect. Land management (moorland gripping) appears to exert the most important control on hillslope pipe frequency in blanket peats. Management practice in peatlands...
متن کاملPiping and woody plants in peatlands: Cause or effect?
[1] This paper presents, for the first time, evidence to show that Calluna species are one causative factor of piping in blanket peat catchments. Ground-penetrating radar survey on 960 plots illustrated that piping was prevalent throughout blanket peats. However, soil pipe occurrence was significantly higher where bare peat (149 pipes/km) or Calluna (87 pipes/km) were present compared to other ...
متن کاملSediment and particulate carbon removal by pipe erosion increase over time in blanket peatlands as a consequence of land drainage
[1] Land drainage is common in peatlands. Artificially drained blanket peat catchments have been shown to have a significantly greater soil pipe density than intact catchments. This paper investigates the role of surface land drains in the enhancement of soil piping in blanket peats. The density of piping was found to significantly increase in a linear fashion with the age of the drainage. Thir...
متن کاملEcohydrologically important subsurface structures in peatlands revealed by ground-penetrating radar and complex conductivity surveys
[1] The surface pattern of vegetation influences the composition and humification of peat laid down during the development of a bog, producing a subsurface hydrological structure that is expected to affect both the rate and pattern of water flow. Subsurface peat structures are routinely derived from the inspection of peat cores. However, logistical limits on the number of cores that can be coll...
متن کاملDetermination of unstable tectonic zones in C–North deposit, Sangan, NE Iran using GPR method: importance of structural geology
Ground Penetrating Radar (GPR) is an effective and practical geophysical imaging tool, with a wide set of applications in geological mapping of subsurface information. This research study aims at determination of the geophysical parameter differences in the subsurface geological structures and construction of a 3D fracture model. GPR and resistivity methods were applied to detect the unstable t...
متن کامل